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In this paper we propose, derive, and establish the mathematical foundations of
new models for the solution of intermediate regimes in transport theory and
radiative transfer. These new models consist of coupling the transport equations
with their diffusion approximations. Our mathematical theory includes the
rigorous derivation of these models, the existence theory, the positivity of the
solutions, and the asymptotic analysis. We also give the rate of the asymptotic
decay. In order to solve the new coupled problem we propose to use the trans-
mission time marching algorithm introduced and studied in refs. 10, 13–15. We
then study the convergence of the resulting algorithm. These studies are based in
an essential way on the methods we introduced in refs. 14, 15.
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1. INTRODUCTION

The scaled transport equations [1, 2, 3] correspond to finding uE(x, v, t)
such that

“ue
“t
=−

1
e
v ·Nue+

1
e2
S(K−I) ue+cue in X×S2×]0,+.[ (1)

ue(x, v, t)=0, (x, v) ¥ C− , t > 0 (2)

ue(x, v, 0)=uI(x) in X×S2 (3)



where X is an open bounded of R3, C−={(x, v) ¥ “X×S2; nx · v < 0},
S2 is the unit sphere of R3, (Kg)(x, v)=>S2 f(vŒ, v) g(vŒ) dvŒ -g ¥ L2(S2),
ue(x, v, t) is the density of neutrons at x with velocity v at time t, uI=uI(x)
is a given positive function independent of v. The data S is a bounded and
positive function depending only of the position x. The data c is a bounded
function. The parameter e is the mean free path, which is defined as the
ratio of the average distance traveled by a neutron between two successive
collisions and a characteristic length of the problem in consideration. The
function f is defined by f(x, vŒ, v)=|vŒ| c(x, vŒ) g(x, vŒQ v) with

g(x, vŒQ v) dv probability that any secondary neutron (which may be
the original neutron but with a new velocity in a simple scattering event)
induced by an incident neutron with velocity vŒ will be emitted with velocity
v in dv

c(x, vŒ) mean number of secondary neutrons emitted in a collision
event experienced by an incident particle with velocity v at position x

This equation describes the evolution of a neutrons population in a
domain of R3 occupied by a medium which is in interaction with the
neutrons. Similar processes arise in wide variety of physical phenomena
such as radiative transfer, etc...
Solving the transport equations is difficult and this difficulty increases

as the mean free path becomes smaller. Therefore it is apparent that the
development of approximate descriptions to the transport equations is a
very important aspect of transport theory. One of the most important
approximations consists of approximations that remove the velocity
dependence of the transport equation. This leads for example in neutron
transport or radiative transfer to the so-called diffusion approximations.
We shall first describe the derivation of such equations and then examine
their domain of validity.
Assuming for simplicity that uI is independent of v, we then obtain: (6)

The solution ue of the transport problem

“ue
“t
=−

1
e
v ·Nue+

1
e2
S(K−I) ue+cue in X×S2×]0,+.[ (4)

ue(x, v, t)=0, (x, v) ¥ C− , t > 0 (5)

ue(x, v, 0)=uI(x) in X×S2 (6)
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and the solution u of the diffusion problem

“u
“t
=
“

“xi
aij
“u
“xj
+cu in X×]0,+.[ (7)

u(x, t)=0, x ¥ “X, t > 0 (8)

u(x, 0)=uI(x), in X (9)

satisfy

-t \ 0 ||ue( · , · , t)−u( · , t)||L.(X×S2) [ eedt(1+t)CuI

where d=supx c(x), and CuI is a positive constant (independent of e).
L.(X×S2) denotes the space of bounded measurable functions in X×S2.
This approximation is valid under the additional assumption:
The point x is far from the boundary “X and far from the regions of

X for which the data S, f, and q have large variation.
Results of this type are obtained by various authors; see for example

refs. 8, 9, 11, 3, 2, 12, 1 and the references therein.
The coefficients of the diffusion equations can be computed from

those of the transport equations. The diffusion equations (7)–(9) are much
easier to study than the transport equations (4)–(6):

On the mathematical level, diffusion equations are endowed with rich
mathematical theory,

On the numerical level the diffusion equations are much easier to solve
on computer than the transport equations.

In a number of applications we use the transport equations to
compute the physical coefficients involved in the diffusion equations, and
then we solve the diffusion equations.
A second order approximation in e of the solution ue of the transport

equations is obtained in the following result (see ref. 6 and the references
therein for more details)

Theorem 1.1. Let ue be the solution of Eqs. (4)–(6). Let u and w be
the solutions of

−
“

“xi
1aij

“u
“xj
2− cu=g, in X,

u|“X=0
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−
“

“xi
1aij
“w
“xj
2− cw=0, in X

w|“X=−
L
S

“u
“n

where L is a positive constant (independent of the data g); then we have for
all spaces Lp(1 [ p <.)

>ue−5u+e 1 −Di
1
S

“u
“xi
+w+b26>

Lp(X×V)
[ e2Cp, g

where b is a boundary layer corrector, Cp, g is a constant. Lp is the space of
measurable functions such that >X |g|p dx is finite.

The introduction of the boundary layer correctors which are related to
the Milne problem implies that for the free surface boundary condition the
density is approximated by 0 at a point which represents the ‘‘extra-
polated’’ boundary (which is extended by the extrapolation length).
However, the true density does not vanish outside the boundary. Thus, the
diffusion theory does not give a good approximation near the boundary.
Rather, the extrapolated boundary conditions are intended to yield the
proper density only in the interior of the region of interest several mean
free paths away from the surface. Moreover, the diffusion theory together
with boundary layers corrrectors are not valid near and in the regions of X
for which S, f, and g have large variation.
In this paper we shall introduce an alternative model to these classical

methods. We shall then establish the mathematical foundations of these
new models. Our method consists of using the right physical model in its
domain of validity and couple the resulting models. This method involves
additional mathematical difficulties related to the matching of equations of
these models. However, this approach has several advantages. One of the
great advantages is the use of the correct model related to the physical
features of the system. We shall then develop the mathematical theory of
these new models. This theory is based in a crucial way on the methods we
introduced in refs. 14, 15.
The rest of this paper is organized as follows. In the next section we

shall introduce and derive our models. In Section 3, we shall establish the
existence theory in L. and prove the positivity of the solutions for our
models. The results of this section are based on ideas of Papanicolaou, (11)

the maximum principle, and the transmission time marching algorithm. In
Section 4, we establish the existence theory in L2. This result is based on
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Hille–Yosida theory and the methods of ref. 14. In Section 5, we study the
asymptotic behaviour of the solutions to our models. In Section 6, we study
the convergence properties of the algorithm resulting from the applications
of the transmission time marching algorithm to the approximations of the
solutions to our new models. These results are based in a crucial way on
the methods we introduced in refs. 14, 15. Finally, we give in Section 7
some concluding remarks and extensions.

2. PROPOSED MODELS

Let X1, X2 be two opens of R3 such that

X1, X2 …X, X̄1 2 X̄2=X̄, X2=X−X̄1, C12=“X1 5X=“X2 5X

Assume that X1 is the domain where the diffusion theory gives a poor
approximation to the density of particles while in X2 the diffusion theory is
correct. Then we propose the following physical model consisting of two
models: the transport model used in X1 and the diffusion model used in X2,

“ue
“t
=−

1
e
v ·Nue+

1
e2
S(K−I) ue+cue inX1×S2×]0,+. (10)

ue(x, v, t)=0, (x, v) ¥ ((“X1 0C12)×S2)− , t > 0 (11)

ue(x, v, t)=u(x, t), (x, v) ¥ (C12×S2)− , t > 0 (12)

ue(x, v, 0)=uI(x) (x, v) ¥X1×S2 (13)

“u
“t
=
“

“xi
aij
“u
“xj
+cu in X2×]0,+.[ (14)

u(x, t)=0, x ¥ “X2 0C12, t > 0 (15)

u F
S2, v · n1 \ 0

v · n1 dx−
e

S(x)
F
S2, v · n1 \ 0

“u
“xi
Div · n1 dv

=F
S2, v · n1 \ 0

ue(x, v, t) v · n1 dv x ¥ C12, t > 0 (16)

u(x, 0)=uI(x), x ¥X2 (17)

where n denotes the unit exterior normal vector to X1. We shall refer
to this model as the model (a). We shall briefly describe the derivation of
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the matching conditions (12) and (16) between the two models. Set
ue=u0+eu1+e2u2+ke. We then make the approximation

ue(x, v, t)=u0(x, t)=u(x, t) (x, v) ¥ (C12×S2)− , t > 0

To obtain the transmission condition (16), we assume that the flux of
particles

Je, i=F
S2
viue(x, v, t) dv

is conserved through C12, which is justified from physical point of view.

Je · n=F
v ¥ S2, v · n \ 0

ue(x, v, t) v · n dv+F
v ¥ S2, v · n [ 0

ue(x, v, t) v · n dv

=(Je · n)++(Je · n) −

If we make the approximation: ue=u0+eu1 then

ue=u−
e Di
S(x)

“u
“xi

and

F
S2, v · n1 \ 0

ue(x, v, t) v · n1 dv=F
S2, v · n1 \ 0

1u− e Di
S(x)

“u
“xi
2 v · n1 dv

=u F
S2, v · n1 \ 0

v · n1 dv

−
e

S(x)
F
S2, v · n1 \ 0

“u
“xi
Div · n1 dv

The transport problem is difficult to solve for small mean free path.
Since in this case the diffusion theory is not valid near (but valid outside a
neighbourhood of the boundary) the boundary we need only take X1 to be
a small neighborhood of the boundary. Therefore, we need only solve the
transport equations on a small domain X1. The two problems (the diffusion
equations and the transport equations) are only coupled by their boundary
conditions. Therefore, they can be solved by two independent solution
techniques.
Assuming now that the diffusion theory gives a good approximation

of the transport equations everywhere except on the surface (for the

296 Tidriri



boundary conditions). Then in this case we take X2=X. The model we
propose corresponds to the following physical model consisting of two
models: the transport model used in X1 and the diffusion model used
globally in X2=X,

“ue
“t
=−

1
e
v ·Nue+

1
e2
S(K−I) ue+cue in X1×S2×]0,+.[ (18)

ue(x, v, t)=0, (x, v) ¥ (“X1 0C12)×S2)− , t > 0 (19)

ue(x, v, t)=u(x, t), (x, v) ¥ (C12×S2)− , t > 0 (20)

ue(x, v, t)=uI(x) (x, v) ¥X1×S2 (21)

“u
“t
=
“

“xi
aij
“u
“xj
+cu in X×]0,+.[ (22)

u(x, t)=0, x ¥ “X0“X1, t > 0 (23)

(J · n)−=F
S2, v · n1 [ 0

ue(x, v, t) v · n1 dv x ¥ “X1 0C12, t > 0 (24)

u(x, 0)=uI(x), x ¥X (25)

The resulting model will be refered to as the model (b). The derivation of
the matching conditions (20) and (24) between the two models is similar to
the derivation of (12) and (16) for the coupled models (10)–(17). For the
transmission condition (24), we use the kinetic definition of the flux Jí n.
In practice this amounts to a discrete kinetic definition of the flux Jí n.
In fact a large variety of boundary conditions are possible. Without

changing the global solver (for the diffusion equations) our coupled models
give an easy way of supplementing and testing a large variety of transport
boundary conditions.
The general algorithm that we propose for the solution of our models

(a) and (b) is to integrate the evolution problem (10)–(17) and (18)–(25)
with respect to time using the transmission time marching algorithm
introduced and studied in refs. 10, 13, 14, 15 (see also the references
therein). This integration in time is then achieved by the following
uncoupled semi-explicit algorithm, where the operators are treated impli-
citly inside each subdomain and where one of the coupling boundary
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conditions is treated explicitly and the other is treated implicitly. For the
model (a), we obtain

• Set u (0)e =uI and u
(0)=uI

• then, for n \ 0, u (n)e and u
(n) being known, solve successively

u (n+1)e −u (n)e
Dt

=−
1
e
v ·Nu (n+1)e +

1
e2
S(K−I) u (n+1)e +cu (n+1)e in X1×S2

(26)

u (n+1)e (x, v)=0, (x, v) ¥ ((“X1 0C12)×S2)− (27)

u (n+1)e (x, v)=u (n+1)(x), (x, v) ¥ (C12×S2)− (28)

u (n+1)−u (n)

Dt
=
“

“xi
aij
“u (n+1)

“xj
+cu (n+1), x ¥X2 (29)

u (n+1)(x)=0, x ¥ “X2 0C12 (30)

u (n+1) F
S2, v · n1 \ 0

v · n1 dv−
e

S(x)
F
S2, v · n1 \ 0

“u (n+1)

“xi
Div · n1 dv

=F
S2, v · n1 \ 0

u (n)e (x, v, t) v · n1 dv x ¥ C12 (31)

For the model (b), we obtain

• Set u (0)e =uI and u
(0)=uI

• then, for n \ 0, u (n)e and u
(n) being known, solve successively

u (n+1)e −u (n)e
Dt

=−
1
e
v ·Nu (n+1)e +

1
e2
S(K−I) u (n+1)e +cu (n+1)e in X1×S2

(32)

u (n+1)e (x, v)=0, (x, v) ¥ ((“X1 0C12)×S2)− (33)

u (n+1)e (x, v)=u (n+1)(x), (x, v) ¥ (C12×S2)− (34)

u (n+1)−u (n)

Dt
=
“

“xi
aij
“u (n+1)

“xj
+cu (n+1), x ¥X (35)

u (n+1)(x)=0, x ¥ “X0“X1 (36)

J (n+1)í n=F
S2, v · n1 [ 0

u (n)e (x, v, t) v · n1 dv x ¥ “X2 5 “X1 (37)
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The problems (26)–(28) and (29)–(31) respectively (32)–(34) and
(35)–(37) are fully uncoupled. Therefore, they can be solved by two inde-
pendent solvers.
Before we establish the mathematical foundations of these new

models, we shall give the integral formulations of the transport equations
(12)–(15). We then describe the infinite strip problem for which we shall
develop our analysis.
Problem (10)–(13) can be written as follows

“ue
“t
+vŒ ·Nue+SŒue=KŒue in X1×S2×]0,+.[

ue(x, v, t)=0, (x, v) ¥ ((“X1 0C12)×S2)− , t > 0

ue(x, v, t)=u(x, t), (x, v) ¥ (C12×S2)− , t > 0

ue(x, v, 0)=uI(x) (x, v) ¥X1×S2

where

vŒ=
1
e
v

SŒ=
S

e2
− c

KŒ=
S

e2
K

We shall now derive the integral formulation of the scaled transport
equations. We proceed as in the case of unscaled transport equations. We
consider first the problem with homogeneous boundary conditions. We set

g(x, vŒ, t)=KŒue(x, v, t)

and then write the problem in the abstract form

due
dt
=(A−SŒ) ue+g

Using the semigroup GS spanned by the operator A−S, we obtain

ue(t)=GS(t) u0+F
t

0
GS(t−s) g(s) ds
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where

GS(t) u0=u0(x−vŒt, v) exp 1 −F
t

0
SŒ(x−vŒs, v) ds2 Y(t(x, vŒ)− t)

where Y denotes the Heaviside function (Y(s)=0 if s < 0 and Y(s)=1 if
s > 0).

F
t

0
GS(t−s) g(s)=F

t

0
GS(s) g(t−s) ds

GS(s) g(t−s)=g(x−vŒs, v, t−s) exp1 −F
s

0
SŒ(x−vŒy, v) dy2 Y(t(x, vŒ)−s)

We then have

ue(t)=ue0(x−vŒt, v) exp 1 −F
t

0
SŒ(x−vŒs, v) ds2 Y(t(x, vŒ)− t)

+F
t

0
g(x−vŒs, v, t−s) exp 1 −F s

0
SŒ(x−vŒy, v) dy2 Y(t(x, vŒ)−s) ds

For the complete problem (problem with nonhomogeneous boundary
conditions) we add the following term

Y(t−t(x, vŒ)) exp 1 −F t
0
(x, vŒ) S̃(s) ds2 u(x−vŒt(x, vŒ), v, t− t(x, vŒ))

We then obtain the integral formulation for the problem (10)– (13)

ue(t)=ue0(x−vŒt, v) exp 1 −F
t

0
SŒ(x−vŒs, v2 Y(t(x, vŒ)− t)

+F
t

0
g(x−vŒs, v, t−s) exp 1 −F s

0
SŒ(x−vŒy, v) dy2 Y(t(x, vŒ)−s) ds

+Y(t−t(x, vŒ)) exp 1 −F t(x, vŒ)
0

SŒ(x−vs, v) ds2

×u(x−vŒt(x, vŒ), v, t− t(x, vŒ)) (38)

To develop the mathematical theory of these new models, we shall
study the problem of infinite strip with isotropic collision operator. This
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problem corresponds to solving the transport equations (4) in the open
of R3

{(x, x2, x3) ¥ R3; −1 [ x1 [ 1} (39)

with V=S2 the unit sphere of R3, S is constant and positive, and the
collision kernel is also constant. It is not difficult to prove that solving the
transport equations (4) in the open (39) of R3 with absorbing boundary
conditions and initial condition depending only on x1, is equivalent to
solving the following equations in the interval ]−1, 1[ of R, m being the
projection of the velocity of neutrons on the axis Ox1

“ue
“t
=−

1
e
m
“ue
“x
+
1
e2
S(K−I) ue+cue in ]−1, 1[×[−1, 1]×]0,+.[

(40)

ue(−1, m, t)=0, m > 0, t > 0 (41)

ue(1, m, t)=0, m < 0, t > 0 (42)

ue(x, m, 0)=uI(x) (x, m) ¥ ]−1, 1[×[−1, 1] (43)

where we have

V=[−1, 1], f — 1, Kg=F
1

−1
g(m)

dm
2
, Di(m)=m

We shall take

X=]0, 1[, X1=]0, a[, X2=]a, 1[ (0 < a < 1)

Hence we have

aij=
1
S(x)

(1, viDj) V

=
1
S(x)

F
1

−1
vivj dv

=
1
S(x)

F
1

−1
m2
dm
2

=
1
3
1
S(x)

(44)
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On the other hand the transmission condition (16) becomes

u F
1

0
m
dm
2
−
e

S

“u
“x

F
1

0
D(m) m

dm
2
=F

1

0
ue(a, m, t) m

dm
2

Hence we have

1
4
u−
e

S

“u
“xi

F
1

0
m2
dm
2
=
1
4
u−
1
6
e

S

“u
“xi

=
1
2
F
1

0
ue(a, m, t) m dm

And then we obtain

1
2
u−
e

3S
“u
“xi
=F

1

0
ue(a, m, t) m dm

The model (a) then becomes

“ue
“t
=−

1
e
m
“ue
“x
+
1
e2
S(K−I) ue+cue in ]0, a[×[−1, 1]×]0,+.[

(45)

ue(0, m, t)=0, m > 0, t > 0 (46)

ue(a, m, t)=u(a, t), m < 0, t > 0 (47)

ue(x, m, 0)=uI(x) (x, v) ¥ ]0, a[×[−1, 1] (48)

“u
“t
=
“

“x
1 1
3S(x)

“u
“x
2+cu in ]a, 1[×]0,+.[ (49)

u(1, t)=0, t > 0 (50)

1
2
u(a, t)−

e

3S
“u
“x
(a, t)=F

1

0
ue(a, m, t) m dm t > 0 (51)

u(x, 0)=uI(x), x ¥ ]a, 1[ (52)

We shall make the assumptions that c is constant. Our results are valid
for more general coefficients S and c. We shall also assume that c < 0. This
assumption (c < 0) is important for the existence of a solution to the
stationary (diffusion) problem.
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The steady problem corresponding to Eqs. (45)–(52) is as follows

−
1
e
m
“ue
“x
+
1
e2
S(K−I) ue+cue=0 in ]0, a[×[−1, 1] (53)

ue(0, m)=0, m > 0 (54)

ue(a, m)=u(a), m < 0 (55)

“

“x
1 1
3S(x)

“u
“x
2+cu=0 in ]a, 1[ (56)

u(1)=0 (57)

1
2
u(a)−

e

3S
du
dx
(a)=F

1

0
ue(a, m) m dm (58)

3. ANALYSIS IN L/: EXISTENCE THEORY AND POSITIVITY

In this section, we shall study the positivity and existence theory of the
solution to the problem (45)–(52) in L.. For this purpose we introduce
an iterative process which is based on the transmission time marching
algorithm and ideas of Papanicolaou. (11) More precisely, we have the
following result.

Theorem 3.1. Assume that uI ¥ L.(X) and uI \ 0 a.e. Then the
coupled problem has a unique solution (ue, u) in L.(X1×V)×L.(X2).
Moreover, (ue, u) satisfies ue \ 0 and u \ 0 a.e.

Proof. To prove this theorem, we introduce the following iterative
process

u (0)e (x, v, t)=ue0(x−vŒt, v) exp 1 −F
t

0
SŒ(x−vŒs, v) ds2 Y(t(x, vŒ)− t)

(u (n+1)e , u (n+1)) is a solution of the coupled problem

“u (n+1)e

“t
=−

1
e
m
“u (n+1)e

“x
+
1
e2
S(K−I) u (n+1)e +cu (n+1)e

in ]0, a[×[−1, 1]×]0,+.[ (59)

u (n+1)e (0, m, t)=0, m > 0, t > 0 (60)
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u (n+1)e (a, m, t)=u (n+1)(a, t), m < 0, t > 0 (61)

u (n+1)e (x, m, 0)=uI(x) (x, v) ¥ ]0, a[×[−1, 1] (62)

“u (n+1)

“t
=
“

“x
1 1
3S(x)

“u (n+1)

“x
2+cu (n+1) in ]a, 1[×]0,+.[ (63)

u (n+1)(1, t)=0, t > 0 (64)

1
2
u (n+1)(a, t)−

e

3S
“u (n+1)

“xi
(a, t)=F

1

0
u (n)e (a, m, t) m dm t > 0 (65)

u (n+1)(x, 0)=uI(x), x ¥ ]a, 1[ (66)

We first assume n=0. The boundary term (65) can be written as
follows

u (1)+b
“u (1)

“n2
=k

where b \ 0 and k \ 0 (since u (0)e \ 0). Moreover, u (1)(x, 0) \ 0.
By maximum principle we obtain

0 [ u (1) [ ||uI ||. (67)

On the other hand, using (38), the solution of Problem (45)– (48), can
be written as follows

u (1)e (t)=ue0(x−vŒt, v) exp 1 −F
t

0
SŒ(x−vŒ, v) ds2 Y(t(x, vŒ)− t)

+F
t

0
KŒu (1)e (x−vŒs, v, t−s) exp 1 −F

s

0
SŒ(x−vŒy, v) dy2

×Y(t(x, vŒ)−s) ds

+Y(t−t(x, vŒ)) exp 1 −F t(x, vŒ)
0

SŒ(x−vŒs, v) ds2

×u (1)(x−vŒt(x, vŒ), v, t− t(x, vŒ)) (68)

Using the positivity of the collision integral and u (1), we conclude that

u (1)e \ 0
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By induction we show that

u (n) \ 0 -n \ 1

u (n)e \ 0 -n \ 1

Next, we shall show that

u (n) [ ||uI ||. -n \ 1 (69)

u (n)e [ ||uI ||. -n \ 1 (70)

The boundedness of u (1) is given in (68). Using (68), we obtain

u (1)e [ ||ue0 ||.

The relations (69)–(70) are then obtained by induction.
We shall now prove that

u (n+1) \ u (n)

u (n+1)e \ u (n)e

By comparison principle, we prove that

u (1) [ u (0)

Using again (68), we obtain

u (1)e \ u (0)e

By induction we show that

u (n+1) \ u (n)

u (n+1)e \ u (n)e

The sequences u (n) and u (n)e are nonegative increasing and bounded.
Therefore, they have nonegative limits u and ue. Moreover by monotone
convergence theorem the limit (ue, u) satisfies the system (45)–(52).

New Models for the Solution of Intermediate Regimes 305



We shall now prove the uniqueness of the solution to the problem
(45)–(52). Let (u1e, u1) and (u2e, u2) be a pair of solutions to Problem
(45)–(52), then

ue=u2e−u1e

u=u2−u1

satisfy

“ue
“t
=−

1
e
m
“ue
“x
+
1
e2
S(K−I) ue+cue in ]0, a[×[−1, 1]×]0,+.[

(71)

ue(0, m, t)=0, m > 0, t > 0 (72)

ue(a, m, t)=u(a, t), m < 0, t > 0 (73)

ue(x, m, 0)=0 (x, v) ¥ ]0, a[×[−1, 1] (74)

“u
“t
=
“

“x
1 1
3S(x)

“u
“x
2+cu in ]a, 1[×]0,+.[ (75)

u(1, t)=0, t > 0 (76)

1
2
u(a, t)−

e

3S
“u
“xi
(a, t)=F

1

0
uê(a, m, t) m dm t > 0 (77)

u(x, 0)=0, x ¥ ]a, 1[ (78)

By maximum principle we show that the solution u of Problem
(77)–(78) is identically 0. It is then clear that ue is identically 0. And the
theorem is proved. L

4. EXISTENCE THEORY IN L2

In this section we shall give an existence result for the solution to our
models in L2. This result is based on Hille–Yosida theory and the methods
we introduced in refs. 14, 15. We shall work in the Hilbert space

H=L2(X1×V)×L2(X2)
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with the following norm

||(w1, w2)||=(||w1 ||
2
L2(X1×V)+||w2 ||

2
L2(X2))

1/2

We have the following existence and uniqueness result.

Theorem 4.1. Assume that uI ¥ L2(X). Then the coupled problem
(45)–(52) has a unique strong solution.

Proof. Let A be the operator defined in H by

A(w1, w2)=R
m

e

“w1
“x

−
1
3S
w'2

S (79)

D(A)=˛
(w1, w2) ¥H | m

“w1
“x

¥ L2(X1×V), and w'2 ¥ L
2(X2)

w2(1)=0, w1(0, m)=0 m > 0

w1(a, m)=w2(a) m < 0

1
2
w2(a)−

1
3
e

S
w −2(a)=F

1

0
mw1(a, m) dm

ˇ
Let B be the operator defined on H by

B(w1, w2)=R −
1
e2
S(K−I) w1− cw1

− cw2

S (80)

B is linear continu in H. By a perturbation result if we prove that A is the
infinitesimal generator of a C0 semigroup then A+B is also an infinitesimal
generator of C0 semigroup and Theorem 4.1 will be proved. It is clear that
D(A) is dense in H. We shall use the theorem of Hille–Yosida. (6)

Let l be a real number and let f ¥H. We shall study the problem

Find w ¥ D(A) solution of (81)

Aw+lw=f (82)
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which corresponds to finding w ¥ D(A) such that

m

e

“w1
“x
+lw1=f1 (83)

−
1
3S
wŒ −2+lw2=f2 (84)

By a density argument we may assume that f1 and f2 are continuous.
By elementary methods we obtain the general solution of Eqs. (83) and
(84). Using the boundary conditions we found a unique (explicit) solution
to the system (83)–(84).
We shall now prove the estimate

||w|| [
C
l−1

||f|| -l > 1

We first set a= 1
3S . Multiplying Eqs. (83)–(84) respectively by j1w1,

j2w1, and j3w2, with j1, j2, and j3 positive functions to be precised later,
integrating by parts, we obtain

F
1

a

1lj3−
a

2
j'3 2 w22 dx+a F

1

a
j3 1
“w2
“x
22+a
2
[j −3w

2
2]
1
a−a 5j3w2

“w2
“x
61
a

=F
1

a
j3w2f2 (85)

F
0

−1
F
a

0

1lj1−
m

2e
“j1

“x
2 w21+F

0

−1

m

2e
w21(a, m) j1(a)−F

0

−1

m

2e
w21(0, m) j1(0)

=F
0

−1
F
a

0
j1f1w1 (86)

Similarly, we obtain

F
1

0
F
a

0

1lj2−
m

2e
“j2

“x
2 w21+F

1

0

m

2e
w21(a, m) j2(a)− F

1

0

m

2e
w21(0, m) j2(0)

=F
1

0
F
a

0
j2f1w1 (87)

308 Tidriri



Adding the boundary terms in (85), (86), and (87) and using the
coupling boundary conditions, we obtain

F
0

−1

1 m
2e
w21(a, m) j1(a)−

m

2e
w21(0, m) j1(0)2

+F
1

0

1 m
2e
w21(a, m) j2(a)−

m

2e
w21(0, m) j2(0)2

+
a

2
[j −3w

2
2]
1
a−a 5j3w2

“w2
“x
61
a

=w22(a) F
0

−1

m

2e
j1(a)−

1
2e

F
0

−1
mj1(0) w

2
1(0, m) dm

+
1
2e

F
1

0
mw21(a, m) j2(a) dm

−
a

2
j −3(a) w

2
2(a)+aj3(a) w2(a) w

−

2(a)

=BC (88)

We shall now give a lower bound of the boundary terms BC. Using
the boundary conditions, we obtain

w2(a) w
−

2(a)=
3S
2e
w22(a)−

3S
e
1F 1
0
mw1(a, m) dm2 w2(a) (89)

Using Cauchy–Schwarz inequality, we obtain

3S
e
:w2(a) F

1

0
mw1(a, m) dm: [

3S
2e
w22(a)+

3S
2e
1F 1
0
mw1(a, m) dm2

2

[
3S
2e
w22(a)+

3S
2e
1F 1
0
m2w21(a, m) dm2 (90)
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Using Eq. (83), we obtain

F
1

0
m2w21(a, m) dm=2 F

1

0
m2 F

a

0

“w1
“x
w1

=2e F
1

0
F
a

0
mw1(f1−lw1) (91)

Hence we have

F
1

0
m2w21(a, m) dm=2e F

1

0
F
a

0
mw1f1−2e F

1

0
F
a

0
mlw21

[ el F
1

0
F
a

0
m2w21+

e

l
F
1

0
F
a

0
f21−2el F

1

0
F
a

0
mw21 (92)

Combining (89), (90), and (92), we obtain

aj3(a) w2(a) w
−

2(a) \ j3(a) l F
1

0
F
a

0
(2m−m2) w21−

1
l
j3(a) F

1

0
F
a

0
f21 (93)

Plugging this in (88), we obtain

BC \ 1F 0
−1

m

2e
j1(a)−

a

2
j −3(a)2 w22(a)

+j3(a) l F
1

0
F
a

0
(2m−m2) w21−

1
l
j3(a) F

1

0
F
a

0
f21

−
1
2e

F
0

−1
mw21(0, m) j1(0) dm+

1
2e

F
1

0
mw21(a, m) j2(a) dm

\ 1F 0
−1

m

2e
j1(a)−

a

2
j −3(a)2 w22(a)

+j3(a) l F
1

0
F
a

0
(2m−m2) w21−

1
l
j3(a) F

1

0
F
a

0
f21

−
1
2e

F
0

−1
mw21(0, m) j1(0) dm+

1
2e

F
1

0
mw21(a, m) j2(a) dm (94)
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Combining (85), (86), (87), and (94), we obtain

F
0

−1
F
a

0

1lj1−
m

2e
“j1

“x
2 w21+F

0

−1

m

2e
w21(a, m) j1(a)− F

0

−1

m

2e
w21(0, m) j1(0)

+F
1

0
F
a

0

1lj2−
m

2e
“j2

“x
2 w21+F

1

0

m

2e
w21(a, m) j2(a)−F

1

0

m

2e
w21(0, m) j2(0)

+F
1

a

1lj3−
a

2
j'3 2 w22 dx+a F

1

a
j3 1
“w2
“x
22+a
2
[j −3w

2
2]
1
a−a 5j3w2

“w2
“x
61
a

=F
0

−1
F
a

0
j1f1w1+F

1

0
F
a

0
j2f1w1+F

1

a
j3w2f2 (95)

Using Cauchy–Schwarz inequality, we obtain

F
0

−1
F
a

0

11l−1
2
2 j1−

m

2e
“j1

“x
2 w21 dx dm+F

1

0
F
a

0

11l−1
2
2 j2−

m

2e
“j2

“x
2 w21 dx dm

+F
1

a

11l−1
2
2 j3−

a

2
j'3 2 w22 dx+a F

1

a
j3 1
“w2
“x
22 dx+BC

[
1
2
F
0

−1
F
a

0
j1f

2
1+
1
2
F
1

0
F
a

0
j2f

2
1+
1
2
F
1

a
j3f

2
2 (96)

Using the lower bound of BC, we obtain

F
0

−1
F
a

0

11l−1
2
2 j1−

m

2e
“j1

“x
2 w21 dx dm+F

1

0
F
a

0

11l−1
2
2 j2−

m

2e
“j2

“x
2 w21 dx dm

+F
1

a

11l−1
2
2 j3−

a

2
j'3 2 w22 dx+a F

1

a
j3 1
“w2
“x
22 dx

+1F 0
−1

m

2e
j1(a)−

a

2
j −3(a)2 w22(a)+lj3(a) F

1

0
F
a

0
(2m−m2) w21

−
1
2e

F
0

−1
mw21(0, m) j1(0) dm+

1
2e

F
1

0
mw21(a, m) j2(a) dm

[
1
2
F
0

−1
F
a

0
j1f

2
1+
1
2
F
1

0
F
a

0
(2j3(a)+j2) f

2
1+
1
2
F
1

a
j3f

2
2 (97)
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Consider the functions j1 and j3 defined as follows:

j1=c1x+c1, c1 > 0, x ¥ [0, a]

j2=− c2x+2c2, c2 > 0, x ¥ [0, a]

j3=j3(a)+j
−

3(a)(x−a)

it is now clear that we can choose c1 and c2 and j3(a) and j
−

3(a) such that
j1, j3, and j2 are positives bounded below and above by positive constants
independent on l and such that we have

1
2
j1−

m

2e
“j1

“x
>
c1

2
> 0

1
2
j2−

m

2e
“j2

“x
>
c2

2
> 0

1
2
j3−

a

2
j'3 >

1
2
j3(a) > 0

−
1
4e
j1(a)−

a

2
j −3(a) \ 0

(98)

Using (97) and the above construction of the functions j1, j2, and j3,
we obtain

F
0

−1
F
a

0
(l−1) j1w

2
1 dx dm+F

1

0
F
a

0
(l−1) j2w

2
1 dx dm+F

1

a
(l−1) j3w

2
2 dx

[ 1
2 F
0

−1
F
a

0
j1f

2
1+

1
2 F
1

0
F
a

0
(2j3(a)+j2) f

2
1+

1
2 F
1

a
j3f

2
2

Because of our special construction of the function j1, j3, and j2, we
conclude that

||w|| [
C
l−1

||f|| -l > 1

And the theorem is proved. L
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5. ASYMPTOTIC ANALYSIS

In this section, we study the asymptotic behaviour of the solution to
Problem (45)–(52). Let ues and us denote the solution to the stationary
problem corresponding to System (45)–(52), then we have

−
1
e
m
“ues
“x
+
1
e2
S(K−I) ues+cues=0 in ]0, a[×[−1, 1] (99)

ues(0, m)=0, m > 0 (100)

ues(a, m)=us(a), m < 0 (101)

“

“x
1 1
3S(x)

“us
“x
2+cus=0 in ]a, 1[ (102)

us(1)=0 (103)

1
2
us(a)−

e

3S
“us
“x
(a)=F

1

0
ues(a, m) m dm (104)

Let ūe=ue−ues and ū=u−us, we then have

“ūe
“t
=−

1
e
m
“ūe
“x
+
1
e2
S(K−I) ūe+cūe in ]0, a[×[−1, 1]×]0,+.[

(105)

ūe(0, m, t)=0, m > 0, t > 0 (106)

ūe(a, m, t)=ū(a, t), m < 0, t > 0 (107)

ūe(x, m, 0)=ūI(x) (x, v) ¥ ]0, a[×[−1, 1] (108)

“ū
“t
=
“

“x
1 1
3S(x)

“ū
“x
2+cū in ]a, 1[×]0,+.[ (109)

ū(1, t)=0, t > 0 (110)

1
2
ū(a, t)−

e

3S
“ū
“x
(a, t)=F

1

0
ūe(a, m, t) m dm t > 0 (111)

ū(x, 0)=ūI(x), x ¥ ]a, 1[ (112)

In what follows we shall omit the bar sign. We have the following
asymptotic result.
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Theorem 5.1. Assume that uI ¥ L2(X), then the solution of
Problem (45)–(52) converges in L2(X1×V)×H1(X2) to the solution of the
steady problem (99)–(104) as t tends to ..

Proof. We first set a= 1
3S . Multiplying Eqs. (105) and (109) respec-

tively by j1ue, j2ue and j3u with j1, j2, and j3 positive functions to be
precised later, integrating by parts, we obtain

F
a

0

“ue
“t
j1ue+

m

e
F
a

0

“ue
“x
j1ue dx−

1
e2
S F

a

0
(Kue−ue) j1ue− c F

a

0
uej1ue dx=0

F
1

a

“u
“t
j3u−a F

1

a
uœj3u dx− c F

1

a
j3u2=0

Using Green’s formula and integrating with respect to m on ]−1, 0[, we
obtain

1
2
d
dt

F
0

−1
F
a

0
j1u

2
e+F

0

−1
F
a

0

11 1
e2
S− c2 j1−

m

2e
“j1

“x
2 u2e dx dm

+F
0

−1

m

2e
u2e(a, m) j1(a)−F

0

−1

m

2e
u2e(0, m) j1(0)−

1
e2
S F

a

0
Kuej1ue=0

(113)

1
2
d
dt

F
1

0
j3u2+a F

1

a
j3(uŒ)2 dx−F

1

a

1cj3+
a

2
j'3 2 u2

+
a

2
[u2j −3]

1
a−a 5j3u

“u
“x
61
a
=0 (114)

Similarly we obtain

1
2
d
dt

F
1

0
F
a

0
j2u

2
e+F

1

0
F
a

0

11 1
e2
S− c2 j2−

m

2e
“j2

“x
2 u2e dx dm

+F
1

0

m

2e
u2e(a, m) j2(a)−F

1

0

m

2e
u2e(0, m) j2(0)−

1
e2
S F

1

0
F
a

0
Kuej2ue=0

(115)

Adding the boundary terms in (113), (114), and (115) and using the
boundary conditions, we obtain

314 Tidriri



F
0

−1

1 m
2e
u2e(a, m) j1(a)−

m

2e
u2e(0, m) j1(0)2

+F
1

0

1 m
2e
u2e(a, m) j2(a)−

m

2e
u2e(0, m) j2(0)2+

a

2
[j −3u

2]1a−a 5j3u
“u
“x
61
a

=u2(a) F
0

−1

m

2e
j1(a)−

1
2e

F
0

−1
mj1(0) u

2
e(0, m) dm

+
1
2e

F
1

0
mu2e(a, m) j2(a) dm−

a

2
j −3(a) u

2(a)+aj3(a) u(a) uŒ(a)

=BC (116)

Proceeding as in the previous section, we obtain the following lower
bound for the boundary terms

BC \ 1F 0
−1

m

2e
j1(a)−

a

2
j −3(a)2 u2(a)−

1
e
j3(a) F

1

0
m2u2e(a, m)

−
1
2e

F
0

−1
mu2e(0, m) j1(0) dm+

1
2e

F
1

0
mu2e(a, m) j2(a) dm (117)

Combining (113), (114), and (115), we obtain

1
2
d
dt

F
0

−1
F
a

0
j1u

2
e+F

0

−1
F
a

0

11 1
e2
S− c2 j1−

m

2e
“j1

“x
2 u2e dx dm

−
1
e2
S F

0

−1
F
a

0
Kuej1ue

+
1
2
d
dt

F
1

0
F
a

0
j2u

2
e+F

1

0
F
a

0

11 1
e2
S− c2 j2−

m

2e
“j2

“x
2 u2e dx dm

−
1
e2
S F

1

0
F
a

0
Kuej2ue

+
1
2
d
dt

F
1

a
j3u2+a F

1

a
j3(uŒ)2 dx−F

1

a

1cj3+
a

2
j'3 2 u2+BC=0 (118)
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Next we shall give an estimate of the collision integral terms. We have
using Cauchy–Schwarz inequality

:F 0
−1

F
a

0
(Kue) j1ue : [ 1

2 F
0

−1
F
a

0
j1(Kue)2(x, m) dm dx

+12 F
0

−1
F
a

0
j1u

2
e(x, m) dm dx

[ F
1

−1
F
a

0

1F 0
−1
j1 dm2 u2e(x, m) dm dx

+12 F
0

−1
F
a

0
j1u

2
e(x, m) dm dx

:F 1
0
F
a

0
(Kue) j2ue : [ F

a

0

1F 1
0
j2 dm2 1F

1

−1
u2e(x, mŒ) dmŒ 2 dx

+12 F
1

0
F
a

0
j2u

2
e(x, m) dm dx

[ F
1

−1
F
a

0

1F 1
0
j2 dm2 u2e(x, m) dm dx

+1
2 F
1

0
F
a

0
j2u

2
e(x, m) dm dx

We then obtain

1
2
d
dt

F
0

−1
F
a

0
j1u

2
e+F

0

−1
F
a

0

11 1
e2
S− c2 j1−

m

2e
“j1

“x
−
1
e2
S 5F 0

−1
j1 dmŒ+

1
2
j1 6

−
1
e2
S F

1

0
j2 dmŒ 2 u2e dx dm

+
1
2
d
dt

F
1

0
F
a

0
j2u

2
e+F

1

0
F
a

0

11 1
e2
S− c2 j2−

m

2e
“j2

“x
−
1
e2
S F

0

−1
j1 dmŒ

−
1
e2
S 5F 1

0
j2 dmŒ+

1
2
j2 62 u2e dx dm

+
1
2
d
dt

F
1

a
j3u2+a F

1

a
j3(uŒ)2 dx−F

1

a

1cj3+
a

2
j'3 2 u2+BC [ 0
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Using (117), we obtain

1
2
d
dt

F
0

−1
F
a

0
j1u

2
e+F

0

−1
F
a

0

11 1
2e2
S− c2 j1−

m

2e
“j1

“x
−
1
e2
S F

0

−1
j1 dmŒ

−
1
e2
S F

1

0
j2 dmŒ 2 u2e dx dm

+
1
2
d
dt

F
1

0
F
a

0
j2u

2
e+F

1

0
F
a

0

11 1
2e2
S− c2 j2−

m

2e
“j2

“x
−
1
e2
S F

0

−1
j1 dmŒ

−
1
e2
S F

1

0
j2 dmŒ 2 u2e dx dm

+
1
2
d
dt

F
1

a
j3u2+F

1

a
aj3(uŒ)2 dx−F

1

a

1cj3+
a

2
j'3 2 u2

+1F 0
−1

m

2e
j1(a)−

a

2
j −3(a)2 u2(a)−

1
e
j3(a) F

1

0
m2u2e(a, m)

−
1
2e

F
0

−1
mu2e(0, m) j1(0) dm+

1
2e

F
1

0
mu2e(a, m) j2(a) dm [ 0

If we choose j1 and j2 such that

F
0

−1
j1(x, m) dm=1

F
1

0
j2(x, m) dm=1

we obtain

1
2
d
dt

F
0

−1
F
a

0
j1u

2
e+F

0

−1
F
a

0

1 1
e2
S 11
2
j1−22− cj1−

m

2e
“j1

“x
2 u2e dx dm

+
1
2
d
dt

F
1

0
F
a

0
j2u

2
e+F

1

0
F
a

0

1 1
e2
S 11
2
j2−22− cj2−

m

2e
“j2

“x
2 u2e dx dm

+
1
2
d
dt

F
1

a
j3u2+F

1

a
aj3(uŒ)2 dx−F

1

a

1cj3+
a

2
j'3 2 u2

+1F 0
−1

m

2e
j1(a)−

a

2
j −3(a)2 u2(a)+

1
e
F
1

0
m 11
2
j2(a)−mj3(a)2 u2e(a, m)

−
1
2e

F
0

−1
mu2e(0, m) j1(0) dm [ 0 (119)
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Therefore, it becomes clear that we can choose j1, j2, and j3 positive
functions bounded below and above by positive constants independent on
m and x, and satisfying

1
e2
S 11
2
j1−22− cj1−

m

2e
“j1

“x
=j1

1
e2
S 11
2
j2−22− cj2−

m

2e
“j2

“x
=j2

− cj3−
a

2
j'3=j3

F
0

−1

m

2e
j1(a)−

a

2
j −3(a) \ 0

1
2
j2(a)−mj3(a) \ 0

Using (119) and the above construction of the functions j1, j2 and j3,
we obtain

F
0

−1
F
a

0
j1u

2
e+F

1

0
F
a

0
j2u

2
e+F

1

a
j3u2

[ e −2t 5 F 0
−1

F
a

0
j1u

2
e0+F

1

0
F
a

0
j2u

2
e0+F

1

a
j3u

2
0
6

Because of our special construction of j1, j2, and j3, we obtain

F
0

−1
F
a

0
u2e+F

1

0
F
a

0
u2e+F

1

a
u2+F

1

a
(uŒ)2

[ Ce −2t 5 F 0
−1

F
a

0
u2e0+F

1

0
F
a

0
u2e0+F

1

a
u206

This concludes the proof of our theorem. L

6. CONVERGENCE ANALYSIS OF THE TRANSMISSION TIME

MARCHING ALGORITHM

In this section we study the convergence properties of the transmission
time marching algorithm applied to the coupled system (45)–(52). Our
analysis is based on the methods of refs. 14, 15.
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If we apply the transmission time marching algorithm to the model (a)
(45)–(52), we obtain the following algorithm

u (n+1)e −u (n)e
Dt

=−
1
e
m
“u (n+1)e

“x
+
1
e2
S(K−I) u (n+1)e +cu (n+1)e

in ]0, a[×[−1, 1] (120)

u (n+1)e (0, m)=0, m > 0 (121)

u (n+1)e (a, m)=u (n+1)(a), m < 0 (122)

u (n+1)−u (n)

Dt
=
“

“x
1 1
3S(x)

“u (n+1)

“x
2+cu (n+1) in ]a, 1[ (123)

u (n+1)(1)=0 (124)

1
2
u (n+1)(a)−

e

3S
“u (n+1)

“xi
(a)=F

1

0
u (n)e (a, m) m dm (125)

u (0)e (x, m)=uI(x), (x, m) ¥ ]0, a[×[−1, 1], u (0)(x)=uI(x),

x ¥ ]a, 1[ (126)

We have the following convergence theorem.

Theorem 6.1. Assume that uI ¥ L2(X). Then the solution to the
coupled problem (45)–(52) converges in L2(X1×V)×H1(X2) as n tends to
. to the solution of the corresponding steady coupled problem (99)– (104).

Proof. Setting c= 1
Dt , ue=u

(n+1)
e −ues, fe=u

(n)
e −ues, u=u

(n+1)−us,
f=u (n)−us, we obtain

c(ue−fe)=−
1
e
m
“ue
“x
+
1
e2
S(K−I) ue+cue in ]0, a[×[−1, 1] (127)

ue(0, m)=0, m > 0 (128)

ue(a, m)=u(a), m < 0 (129)

c(u−f)=
“

“x
1 1
3S(x)

“u
“x
2+cu in ]a, 1[ (130)

u(1)=0 (131)

1
2
u(a)−

e

3S
“u
“xi
(a)=F

1

0
fe(a, m) m dm (132)

New Models for the Solution of Intermediate Regimes 319



Multiplying Eqs. (127) and (130) respectively by j1ue, j2ue, and j3u
with j1, j2, and j3 positive functions to be precised later, integrating by
parts, we obtain
We then obtain

F
0

−1
F
a

0
c(ue−fe) j1ue+F

0

−1
F
a

0

11 1
e2
S− c2 j1−

m

2e
“j1

“x
2 u2e dx dm

+F
0

−1

m

2e
u2e(a, m) j1(a)−F

0

−1

m

2e
u2e(0, m) j1(0)−

1
e2
S F

0

−1
F
a

0
Kuej1ue=0

(133)

F
1

0
F
a

0
c(ue−fe) j2ue+F

1

0
F
a

0

11 1
e2
S− c2 j2−

m

2e
“j2

“x
2 u2e dx dm

+F
1

0

m

2e
u2e(a, m) j2(a)−F

1

0

m

2e
u2e(0, m) j2(0)−

1
e2
S F

1

0
F
a

0
Kuej2ue=0

(134)

where a= 1
3e.

Adding the boundary terms in (133) and (134), and using the
boundary conditions, we obtain

F
0

−1

1 m
2e
u2e(a, m) j1(a)−

m

2e
u2e(0, m) j1(0)2

+F
1

0

1 m
2e
u2e(a, m) j2(a)−

m

2e
u2e(0, m) j2(0)2+

a

2
[j −3u

2]1a−a 5j3u
“u
“x
61
a

=u2(a) F
0

−1

m

2e
j1(a)−

1
2e

F
0

−1
mj1(0) u

2
e(0, m) dm

+
1
2e

F
1

0
mu2e(a, m) j2(a) dm−

a

2
j −3(a) u

2(a)+aj3(a) u(a) uŒ(a)

=BC (135)

Proceeding as in the previous sections, we obtain

BC \ 1F 0
−1

m

2e
j1(a)−

a

2
j −3(a)2 u2(a)−

1
e
j3(a) F

1

0
m2f2e(a, m)

−
1
2e

F
0

−1
mu2e(0, m) j1(0) dm+

1
2e

F
1

0
mu2e(a, u) j2(a) dm (136)
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Combining (133) and (134), we obtain

F
0

−1
F
a

0
c(ue−fe) j1ue+F

0

−1
F
a

0

11 1
e2
S− c2 j1−

m

2e
“j1

“x
2 ue2 dx dm

−
1
e2
S F

0

−1
F
a

0
Kuej1ue

+F
1

0
F
a

0
c(ue−fe) j2ue+F

1

0
F
a

0

11 1
e2
S− c2 j2−

m

2e
“j2

“x
2 u2e dx dm

−
1
e2
S F

1

0
F
a

0
Kuej2ue

+F
1

a
c(u−f) j3u+a F

1

a
j3(uŒ)2 dx−F

1

a

1cj3+
a

2
j'3 2 u2+BC=0

(137)

Using the estimates of the collision integral terms obtained in the
proof of the theorem about the large time behaviour, we obtain

F
0

−1
F
a

0
c(ue−fe) j1ue+F

0

−1
F
a

0

11 1
e2
S− c2 j1−

m

2e
“j1

“x

−
1
e2
S 5F 0

−1
j1 dmŒ+

1
2
j1 6−

1
e2
S F

1

0
j2 dmŒ 2 u2e dx dm

+F
1

0
F
a

0
c(ue−fe) j2ue+F

1

0
F
a

0

11 1
e2
S− c2 j2−

m

2e
“j2

“x
−
1
e2
S F

0

−1
j1 dmŒ

−
1
e2
S 5 F 1

0
j2 dmŒ+

1
2
j2 62 u2e dx dm

+F
a

0
c(u−f) j3u+a F

1

a
j3(uŒ)2 dx−F

1

a
(cj3+

a

2
j'3 2 u2+BC [ 0
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Using (134), we obtain

F
0

−1
F
a

0
c(ue−fe) j1ue+F

0

−1
F
a

0

11 1
2e2
S− c2 j1−

m

2e
“j1

“x
−
1
e2
S F

0

−1
j1 dmŒ

−
1
e2
S F

1

0
j2 dmŒ 2 u2e dx dm

+F
1

0
F
a

0
c(ue−fe) j2ue+F

1

0
F
a

0

11 1
2e2
S− c2 j2−

m

2e
“j2

“x

−
1
e2
S F

0

−1
j1 dmŒ−

1
e2
S F

1

0
j2 dmŒ 2 u2e dx dm

+F
a

0
c(u−f) j3u+F

1

a
aj3(uŒ)2 dx− F

1

a

1cj3+
a

2
j'3 2 u2

+1F 0
−1

m

2e
j1(a)−

a

2
j −3(a)2 u2(a)−

1
e
j3(a) F

1

0
m2f2e(a, m)

−
1
2e

F
0

−1
mu2e(0, m) j1(0) dm+

1
2e

F
1

0
mu2e(a, m) j2(a) dm [ 0

Using Cauchy–Schwarz inequality, we obtain

F
0

−1
F
a

0

11 1
2e2
S− c+

c
2
2 j1−

m

2e
“j1

“x
−
1
e2
S F

0

−1
j1 dmŒ−

1
e2
S F

1

0
j2 dmŒ 2

×u2e dx dm+F
1

0
F
a

0

11 1
2e2
S− c+

c
2
2 j2−

m

2e
“j2

“x
−
1
e2
S F

0

−1
j1 dmŒ

−
1
e2
S F

1

0
j2 dmŒ 2 u2e dx dm+F

1

0
aj3(uŒ)2 dx+F

1

a

11 c
2
− c2 j3−

a

2
j'3 2 u2

+1F 0
−1

m

2e
j1(a)−

a

2
j −3(a)2 u2(a)−

1
e
j3(a) F

1

0
m2f2e(a, m)

−
1
2e

F
0

−1
mu2e(0, m) j1(0) dm+

1
2e

F
1

0
mu2e(a, m) j2(a) dm

[ F
0

−1
F
a

0

c
2
j1f

2
e+F

1

0
F
a

0

c
2
j2f

2
e+F

a

0

c
2
j3f2 (138)
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If we choose j1 and j2 such that

F
0

−1
j1(x, m) dm=1

F
1

0
j2(x, m) dm=1

we obtain

F
0

−1
F
a

0

1 1
e2
S 11
2
j1−22+1 − c+

c
2
2 j1−

m

2e
“j1

“x
2 u2e dx dm

+F
1

0
F
a

0

1 1
e2
S 11
2
j2−22+1 − c+

c
2
2 j2−

m

2e
“j2

“x
2 u2e dx dm

+F
1

a
aj3(uŒ)2 dx+F

1

a

11 c
2
− c2 j3−

a

2
j'3 2 u2

+1F 0
−1

m

e
j1(a)−

a

2
j −3(a)2 u2(a)−

1
e
j3(a) F

1

0
m2f2e(a, m)

−
1
2e

F
0

−1
mu2e(0, m) j1(0) dm+

1
2e

F
1

0
mu2e(a, m) j2(a) dm

[ F
0

−1
F
a

0

c
2
j1f

2
e+F

1

0
F
a

0

c
2
j2f

2
e+F

a

0

c
2
j3f2 (139)

Therefore, it becomes clear that we can choose j1, j2, and j3 positive
functions bounded below and above by positive constants independent on
m and x, and satisfying

1
e2
S 11
2
j1−22− cj1−

m

2e
“j1

“x
=dj1

1
e2
S 11
2
j2−22− cj2−

m

2e
“j2

“x
=dj2

− cj3−
a

2
j'3=dj3

F
0

−1

m

2e
j1(a)−

a

2
j −3(a) \ 0

1
2
j2(a)−mj3(a) \ 0
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Using the above construction of the functions j1, j2, and j3, we
obtain

||ue ||
2
L2+||u||

2
H1Q 0

This concludes the proof of our theorem. L

7. CONCLUSIONS

In this paper we proposed new models for the solution of transport
equations in the case of intermediate regimes. We then have established the
mathematical foundations of these new models. Our method consists of
coupling the transport equations with their diffusion approximations. The
transport equations are to be solved only in a small domain where the dif-
fusion approximations are not accurate, while on most of the domain we
solve the diffusion equations. The resulting method has the great advantage
of using the correct model related to the physical features of the system.
The proposed method gives an easy way of supplementing and testing a
large variety of transport boundary conditions. Another advantage of the
proposed method is that it can be applied in situations where the direct
simulation of the transport equations is not possible (because of the lack of
memory place and computer power. Because of the crucial importance of
these new models in mathematical physics, we have developed their
mathematical foundations. Our mathematical theory includes a rigorous
derivation of the models the existence theory in L. and positivity of the
solutions to our models, the existence theory in L2, the analysis of the
asymptotic behaviour of the solutions, and the convergence of the trans-
mission time marching algorithm applied to these new models. This
mathematical theory is based in an essential way on the methods we intro-
duced in refs. 14, 15. Other applications of these methods to problems of
mathematical physics can be found in the work refs. 16, 17.
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